
© Negnevitsky, Pearson Education, 2005 1

 Introduction
 Hebbian learning
 Generalised Hebbian learning algorithm
 Competitive learning
 Self-Organising Map (SOM): Kohonen
network
 Summary

Artificial neural networks:
Unsupervised learning

© Negnevitsky, Pearson Education, 2005 2

The main property of a neural network is an
ability to learn from its environment, and to
improve its performance through learning. So
far we have considered supervised or active
learning − learning with an external “teacher”
or a supervisor who presents a training set to the
network. But another type of learning also
exists: unsupervised learning.

Introduction

© Negnevitsky, Pearson Education, 2005 3

 In contrast to supervised learning, unsupervised or
self-organised learning does not require an
external teacher. During the training session, the
neural network receives a number of different
input patterns, discovers significant features in
these patterns and learns how to classify input data
into appropriate categories. Unsupervised
learning tends to follow the neuro-biological
organisation of the brain.

 Unsupervised learning algorithms aim to learn
rapidly and can be used in real-time.

© Negnevitsky, Pearson Education, 2005 4

In 1949, Donald Hebb proposed one of the key
ideas in biological learning, commonly known as
Hebb’s Law. Hebb’s Law states that if neuron i is
near enough to excite neuron j and repeatedly
participates in its activation, the synaptic connection
between these two neurons is strengthened and
neuron j becomes more sensitive to stimuli from
neuron i.

Hebbian learning

© Negnevitsky, Pearson Education, 2005 5

Hebb’s Law can be represented in the form of two
rules:

1. If two neurons on either side of a connection
are activated synchronously, then the weight of
that connection is increased.

2. If two neurons on either side of a connection
are activated asynchronously, then the weight
of that connection is decreased.

Hebb’s Law provides the basis for learning
without a teacher. Learning here is a local
phenomenon occurring without feedback from
the environment.

© Negnevitsky, Pearson Education, 2005 6

Hebbian learning in a neural network

i j

I n
 p

 u
 t

 S
 i

g
n

a
l s

O
 u

 t
p

u
t

S
i g

 n
 a

 l
s

© Negnevitsky, Pearson Education, 2005 7

 Using Hebb’s Law we can express the adjustment
applied to the weight wij at iteration p in the
following form:

 As a special case, we can represent Hebb’s Law as
follows:

where α is the learning rate parameter.
This equation is referred to as the activity product
rule.

][)(),()(pxpyFpw ijij =∆

)()()(pxpypw ijij =∆ a

© Negnevitsky, Pearson Education, 2005 8

 Hebbian learning implies that weights can only
increase. To resolve this problem, we might
impose a limit on the growth of synaptic weights.
It can be done by introducing a non-linear
forgetting factor into Hebb’s Law:

where ϕ is the forgetting factor.

Forgetting factor usually falls in the interval
between 0 and 1, typically between 0.01 and 0.1,
to allow only a little “forgetting” while limiting
the weight growth.

)()()()()(pwpypxpypw ijjijij ϕ−α=∆

© Negnevitsky, Pearson Education, 2005 9

Step 1: Initialisation.
Set initial synaptic weights and thresholds to small
random values, say in an interval [0, 1].

Step 2: Activation.
Compute the neuron output at iteration p

where n is the number of neuron inputs, and θj is the
threshold value of neuron j.

Hebbian learning algorithm

j
n

i
ijij pwpxpy θ−= ∑

=1
)()()(

© Negnevitsky, Pearson Education, 2005 10

Step 3: Learning.
Update the weights in the network:

where ∆wij(p) is the weight correction at iteration p.

The weight correction is determined by the
generalised activity product rule:

Step 4: Iteration.
Increase iteration p by one, go back to Step 2.

)()()1(pwpwpw ijijij ∆+=+

][)()()()(pwpxpypw ijijij −λϕ=∆

© Negnevitsky, Pearson Education, 2005 11

To illustrate Hebbian learning, consider a fully
connected feedforward network with a single layer
of five computation neurons. Each neuron is
represented by a McCulloch and Pitts model with
the sign activation function. The network is trained
on the following set of input vectors:

Hebbian learning example























=

0
0
0
0
0

1X























=

1
0
0
1
0

2X























=

0
1
0
0
0

3X























=

0
0
1
0
0

4X























=

1
0
0
1
0

5X

© Negnevitsky, Pearson Education, 2005 12

Initial and final states of the network

Input layer

x1 1

Output layer

2

1 y1

y2x2 2

x3 3

x4 4

x5 5

4

3 y3

y4

5 y5

1

0

0

0

1

1

0

0

0

1

Input layer

x 1

Output layer

2

1 y1

y2x 2

x 3

x 4

x

4

3 y3

y4

5 y5

1

0

0

0

1

0

0

1

0

1

2

5

© Negnevitsky, Pearson Education, 2005 13

Initial and final weight matrices

O u t p u t l a y e r























10000
01000
00100
00010
00001

21 43 5

1

2

3

4

5

O u t p u t l a y e r












0
0
0
0
0
1 2 3 4 5

1

2

3

4

5

0
0

2.0204
0

2.0204

1.0200
0
0

0
00 .9996

0
0

0

0
0
0

2.0204
0

2.0204










© Negnevitsky, Pearson Education, 2005 14

 A test input vector, or probe, is defined as

When this probe is presented to the network, we
obtain:























=

1
0
0
0
1

X























=

















































−













































=

1
0
0
1
0

0737.0
9478.0
0907.0
2661.0
4940.0

1
0
0
0
1

2.0204002.02040
00.9996000
001.020000

2.0204002.02040
00000

signY

© Negnevitsky, Pearson Education, 2005 15

 In competitive learning, neurons compete among
themselves to be activated.

While in Hebbian learning, several output neurons
can be activated simultaneously, in competitive
learning, only a single output neuron is active at
any time.

 The output neuron that wins the “competition” is
called the winner-takes-all neuron.

Competitive learning

© Negnevitsky, Pearson Education, 2005 16

 The basic idea of competitive learning was
introduced in the early 1970s.

 In the late 1980s, Teuvo Kohonen introduced a
special class of artificial neural networks called
self-organising feature maps. These maps are
based on competitive learning.

© Negnevitsky, Pearson Education, 2005 17

Our brain is dominated by the cerebral cortex, a
very complex structure of billions of neurons and
hundreds of billions of synapses. The cortex
includes areas that are responsible for different
human activities (motor, visual, auditory,
somatosensory, etc.), and associated with different
sensory inputs. We can say that each sensory
input is mapped into a corresponding area of the
cerebral cortex. The cortex is a self-organising
computational map in the human brain.

What is a self-organising feature map?

© Negnevitsky, Pearson Education, 2005 18

Feature-mapping Kohonen model

Input layer

Kohonen layer

(a)

Input layer

Kohonen layer

1 1
(b)

00

© Negnevitsky, Pearson Education, 2005 19

The Kohonen network

 The Kohonen model provides a topological
mapping. It places a fixed number of input
patterns from the input layer into a higher-
dimensional output or Kohonen layer.

 Training in the Kohonen network begins with the
winner’s neighbourhood of a fairly large size.
Then, as training proceeds, the neighbourhood size
gradually decreases.

© Negnevitsky, Pearson Education, 2005 20

Architecture of the Kohonen Network

Input
layer

x1

x2

Output
layer

y

y2

1

y3

© Negnevitsky, Pearson Education, 2005 21

 The lateral connections are used to create a
competition between neurons. The neuron with
the largest activation level among all neurons in
the output layer becomes the winner. This neuron
is the only neuron that produces an output signal.
The activity of all other neurons is suppressed in
the competition.

 The lateral feedback connections produce
excitatory or inhibitory effects, depending on the
distance from the winning neuron. This is
achieved by the use of a Mexican hat function
which describes synaptic weights between neurons
in the Kohonen layer.

© Negnevitsky, Pearson Education, 2005 22

The Mexican hat function of lateral connection

Connection
strength

Distance

Excitatory
effect

Inhibitory
effect

Inhibitory
effect

0

1

© Negnevitsky, Pearson Education, 2005 23

 In the Kohonen network, a neuron learns by
shifting its weights from inactive connections to
active ones. Only the winning neuron and its
neighbourhood are allowed to learn. If a neuron
does not respond to a given input pattern, then
learning cannot occur in that particular neuron.

 The competitive learning rule defines the change
∆wij applied to synaptic weight wij as

where xi is the input signal and α is the learning
rate parameter.



 −

=∆
ncompetitiothelosesneuronif,0

ncompetitiothewinsneuronif),(

j
jwx

w iji
ij

α

© Negnevitsky, Pearson Education, 2005 24

 The overall effect of the competitive learning rule
resides in moving the synaptic weight vector Wj of
the winning neuron j towards the input pattern X.
The matching criterion is equivalent to the
minimum Euclidean distance between vectors.

 The Euclidean distance between a pair of n-by-1
vectors X and Wj is defined by

where xi and wij are the ith elements of the vectors
X and Wj, respectively.

2/1

1

2)(











−=−= ∑

=

n

i
ijij wxd WX

© Negnevitsky, Pearson Education, 2005 25

 To identify the winning neuron, jX, that best
matches the input vector X, we may apply the
following condition:

where m is the number of neurons in the Kohonen
layer.

,jj
minj WXX −= j = 1, 2, . . .,m

© Negnevitsky, Pearson Education, 2005 26

 Suppose, for instance, that the 2-dimensional input
vector X is presented to the three-neuron Kohonen
network,

 The initial weight vectors, Wj, are given by









=

12.0
52.0

X









=

81.0
27.0

1W 







=

70.0
42.0

2W 







=

21.0
43.0

3W

© Negnevitsky, Pearson Education, 2005 27

We find the winning (best-matching) neuron jX

using the minimum-distance Euclidean criterion:

 Neuron 3 is the winner and its weight vector W3 is
updated according to the competitive learning rule.

2
212

2
1111)()(wxwxd −+−= 73.0)81.012.0()27.052.0(22 =−+−=

2
222

2
1212)()(wxwxd −+−= 59.0)70.012.0()42.052.0(22 =−+−=

2
232

2
1313)()(wxwxd −+−= 13.0)21.012.0()43.052.0(22 =−+−=

0.01)43.052.0(1.0)(13113 =−=−=∆ wxw

0.01)21.012.0(1.0)(23223 −=−=−=∆ wxw

© Negnevitsky, Pearson Education, 2005 28

 The updated weight vector W3 at iteration (p + 1)
is determined as:

 The weight vector W3 of the wining neuron 3
becomes closer to the input vector X with each
iteration.









=








−

+







=∆+=+

20.0
44.0

01.0
0.01

21.0
43.0

)()()1(333 ppp WWW

© Negnevitsky, Pearson Education, 2005 29

Competitive Learning Algorithm

Set initial synaptic weights to small random
values, say in an interval [0, 1], and assign a small
positive value to the learning rate parameter α.

Step 1: Initialisation.

© Negnevitsky, Pearson Education, 2005 30

Activate the Kohonen network by applying the
input vector X, and find the winner-takes-all (best
matching) neuron jX at iteration p, using the
minimum-distance Euclidean criterion

where n is the number of neurons in the input
layer, and m is the number of neurons in the
Kohonen layer.

,)()()(
2/1

1

2][












−=−= ∑
=

n

i
ijij

j
pwxpminpj WXX

j = 1, 2, . . .,m

Step 2: Activation and Similarity Matching.

© Negnevitsky, Pearson Education, 2005 31

Update the synaptic weights

where ∆wij(p) is the weight correction at iteration p.
The weight correction is determined by the
competitive learning rule:

where α is the learning rate parameter, and Λj(p) is
the neighbourhood function centred around the
winner-takes-all neuron jX at iteration p.

)()()1(pwpwpw ijijij ∆+=+







Λ∉

Λ∈−
=∆

)(,0

)(,)(
)(

][
pj
pjpwx

pw
j

jiji
ij

Step 3: Learning.

© Negnevitsky, Pearson Education, 2005 32

Increase iteration p by one, go back to Step 2 and
continue until the minimum-distance Euclidean
criterion is satisfied, or no noticeable changes
occur in the feature map.

Step 4: Iteration.

© Negnevitsky, Pearson Education, 2005 33

Competitive learning in the Kohonen network

 To illustrate competitive learning, consider the
Kohonen network with 100 neurons arranged in the
form of a two-dimensional lattice with 10 rows and
10 columns. The network is required to classify
two-dimensional input vectors - each neuron in the
network should respond only to the input vectors
occurring in its region.

 The network is trained with 1000 two-dimensional
input vectors generated randomly in a square
region in the interval between –1 and +1. The
learning rate parameter a is equal to 0.1.

© Negnevitsky, Pearson Education, 2005 34

Initial random weights

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W
(2

,j)

W(1,j)

© Negnevitsky, Pearson Education, 2005 35

Network after 100 iterations

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

W
(2

,j)

W(1,j)

© Negnevitsky, Pearson Education, 2005 36

Network after 1000 iterations

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

W
(2

,j)

W(1,j)

© Negnevitsky, Pearson Education, 2005 37

Network after 10,000 iterations

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

W
(2

,j)

W(1,j)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

