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Artificial neural networks:
Unsupervised learning
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The main property of a neural network is an 
ability to learn from its environment, and to 
improve its performance through learning. So    
far we have considered supervised or active 
learning − learning with an external “teacher”   
or a supervisor who presents a training set to the 
network. But another type of learning also   
exists: unsupervised learning.

Introduction
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 In contrast to supervised learning, unsupervised or 
self-organised learning does not require an     
external teacher. During the training session, the 
neural network receives a number of different      
input patterns, discovers significant features in     
these patterns and learns how to classify input data 
into appropriate categories. Unsupervised        
learning tends to follow the neuro-biological 
organisation of the brain.

 Unsupervised learning algorithms aim to learn
rapidly and can be used in real-time.
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In 1949, Donald Hebb proposed one of the key   
ideas in biological learning, commonly known as 
Hebb’s Law. Hebb’s Law states that if neuron i is 
near enough to excite neuron j and repeatedly 
participates in its activation, the synaptic connection 
between these two neurons is strengthened and 
neuron j becomes more sensitive to stimuli from 
neuron i.

Hebbian learning
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Hebb’s Law can be represented in the form of two    
rules:

1. If two neurons on either side of a connection    
are activated synchronously, then the weight of    
that connection is increased.

2. If two neurons on either side of a connection    
are activated asynchronously, then the weight    
of that connection is decreased.              

Hebb’s Law provides the basis for learning    
without a teacher. Learning here is a local   
phenomenon occurring without feedback from    
the environment.
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Hebbian learning in a neural network
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 Using Hebb’s Law we can express the adjustment      
applied to the weight wij at iteration p in the     
following form:

 As a special case, we can represent Hebb’s Law as     
follows:

where α is the learning rate parameter.                          
This equation is referred to as the activity product      
rule.

][ )(),()( pxpyFpw ijij =∆

)()()( pxpypw ijij =∆ a
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 Hebbian learning implies that weights can only       
increase. To resolve this problem, we might       
impose a limit on the growth of synaptic weights.       
It can be done by introducing a non-linear
forgetting factor into Hebb’s Law:

where ϕ is the forgetting factor.

Forgetting factor usually falls in the interval  
between 0 and 1, typically between 0.01 and 0.1,       
to allow only a little “forgetting” while limiting       
the weight growth.

)()()()()( pwpypxpypw ijjijij ϕ−α=∆
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Step 1: Initialisation.
Set initial synaptic weights and thresholds to small    
random values, say in an interval [0, 1 ].

Step 2: Activation.
Compute the neuron output at iteration p 

where n is the number of neuron inputs, and θj is the 
threshold value of neuron j.

Hebbian learning algorithm

j
n

i
ijij pwpxpy θ−= ∑

=1
)()()(



© Negnevitsky, Pearson Education, 2005 10

Step 3: Learning.                                                  
Update the weights in the network:                     

where ∆wij(p) is the weight correction at iteration p. 

The weight correction is determined by the    
generalised activity product rule:

Step 4: Iteration.                                               
Increase iteration p by one, go back to Step 2.

)()()1( pwpwpw ijijij ∆+=+

][ )()()()( pwpxpypw ijijij −λϕ=∆
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To illustrate Hebbian learning, consider a fully                              
connected feedforward network with a single layer   
of five computation neurons. Each neuron is 
represented by a McCulloch and Pitts model with    
the sign activation function. The network is trained  
on the following set of input vectors:

Hebbian learning example
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Initial and final states of the network
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Initial and final weight matrices
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 A test input vector, or probe, is defined as

When this probe is presented to the network, we        
obtain:
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 In competitive learning, neurons compete among 
themselves to be activated.

While in Hebbian learning, several output neurons  
can be activated simultaneously, in competitive 
learning, only a single output neuron is active at     
any time.

 The output neuron that wins the “competition” is 
called the winner-takes-all neuron.

Competitive learning
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 The basic idea of competitive learning was 
introduced in the early 1970s.

 In the late 1980s, Teuvo Kohonen introduced a 
special class of artificial neural networks called   
self-organising feature maps. These maps are  
based on competitive learning.
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Our brain is dominated by the cerebral cortex, a   
very complex structure of billions of neurons and 
hundreds of billions of synapses. The cortex  
includes areas that are responsible for different  
human activities (motor, visual, auditory, 
somatosensory, etc.), and associated with different 
sensory inputs. We can say that each sensory      
input is mapped into a corresponding area of the 
cerebral cortex. The cortex is a self-organising  
computational map in the human brain.

What is a self-organising feature map?
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Feature-mapping Kohonen model
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The Kohonen network

 The Kohonen model provides a topological     
mapping. It places a fixed number of input     
patterns from the input layer into a higher-
dimensional output or Kohonen layer. 

 Training in the Kohonen network begins with the     
winner’s neighbourhood of a fairly large size.     
Then, as training proceeds, the neighbourhood size     
gradually decreases.
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Architecture of the Kohonen Network
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 The lateral connections are used to create a 
competition between neurons. The neuron with      
the largest activation level among all neurons in     
the output layer becomes the winner. This neuron    
is the only neuron that produces an output signal.  
The activity of all other neurons is suppressed in    
the competition.

 The lateral feedback connections produce 
excitatory or inhibitory effects, depending on the 
distance from the winning neuron. This is     
achieved by the use of a Mexican hat function 
which describes synaptic weights between neurons  
in the Kohonen layer.
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The Mexican hat function of lateral connection
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 In the Kohonen network, a neuron learns by 
shifting its weights from inactive connections to 
active ones. Only the winning neuron and its 
neighbourhood are allowed to learn. If a neuron   
does not respond to a given input pattern, then 
learning cannot occur in that particular neuron.

 The competitive learning rule defines the change 
∆wij applied to synaptic weight wij as  

where xi is the input signal and α is the learning 
rate parameter.
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 The overall effect of the competitive learning rule 
resides in moving the synaptic weight vector Wj of 
the winning neuron j towards the input pattern X. 
The matching criterion is equivalent to the   
minimum Euclidean distance between vectors.

 The Euclidean distance between a pair of n-by-1 
vectors X and Wj is defined by

where xi and wij are the ith elements of the vectors  
X and Wj, respectively.
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 To identify the winning neuron, jX, that best 
matches the input vector X, we may apply the 
following condition:

where m is the number of neurons in the Kohonen 
layer.

,jj
minj WXX −= j = 1, 2, . . .,m
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 Suppose, for instance, that the 2-dimensional input 
vector X is presented to the three-neuron Kohonen 
network,

 The initial weight vectors, Wj, are given by
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We find the winning (best-matching) neuron jX

using the minimum-distance Euclidean criterion:

 Neuron 3 is the winner and its weight vector W3 is 
updated according to the competitive learning rule.
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 The updated weight vector W3 at iteration (p + 1) 
is determined as:

 The weight vector W3 of the wining neuron 3   
becomes closer to the input vector X with each 
iteration.









=








−

+







=∆+=+

20.0
44.0

01.0
0.01

21.0
43.0

)()()1( 333 ppp WWW



© Negnevitsky, Pearson Education, 2005 29

Competitive Learning Algorithm

Set initial synaptic weights to small random
values, say in an interval [0, 1], and assign a small
positive value to the learning rate parameter α.

Step 1: Initialisation.
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Activate the Kohonen network by applying the
input vector X, and find the winner-takes-all (best
matching) neuron jX at iteration p, using the
minimum-distance Euclidean criterion

where n is the number of neurons in the input
layer, and m is the number of neurons in the
Kohonen layer.
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Step 2: Activation and Similarity Matching.
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Update the synaptic weights

where ∆wij(p) is the weight correction at iteration p.
The weight correction is determined by the
competitive learning rule:

where α is the learning rate parameter, and Λj(p) is
the neighbourhood function centred around the
winner-takes-all neuron jX at iteration p.
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Step 3: Learning.
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Increase iteration p by one, go back to Step 2 and
continue until the minimum-distance Euclidean
criterion is satisfied, or no noticeable changes
occur in the feature map.

Step 4: Iteration.
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Competitive learning in the Kohonen network

 To illustrate competitive learning, consider the 
Kohonen network with 100 neurons arranged in the 
form of a two-dimensional lattice with 10 rows and 
10 columns. The network is required to classify 
two-dimensional input vectors - each neuron in the 
network should respond only to the input vectors 
occurring in its region.

 The network is trained with 1000 two-dimensional 
input vectors generated randomly in a square 
region in the interval between –1 and +1. The 
learning rate parameter a is equal to 0.1.
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Initial random weights
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Network after 100 iterations
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Network after 1000 iterations
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Network after 10,000 iterations
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